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ABSTRACT

We continue our investigation of overcoming Gibbs phenomenon, i.e., to obtain exponen-

tial accuracy at all points (including at the discontinuities themselves), from the knowledge

of a spectral partial sum of a discontinuous but piecewise analytic function. We show that if

we are given the first N Gegenbauer expansion coefficients, based on the Gegenbauer polyno-

mials C'(x) with the weight function (1 - x2)0-2 for any constant 14 _ 0, of an L1 function

f(x), we can construct an exponentially convergent approximation to the point values of

f(z) in any sub-interval in which the function is analytic. The proof covers the cases of

Chebyshev or Legendre partial sums, which are most common in applications.
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1 Introduction

In this paper we continue our investigation of overcoming the Gibbs phenomenon, i.e., recov-

ering pointwise exponential accuracy at all points including at the discontinuities themselves,

from the knowledge of a spectral partial sum of. a discontinuous but piecewise analytic func-

tion, which we started in [4], [5], and [6].

Spectral approximations, such as the Fourier approximation based upon trigonometric

polynomials for periodic problems, and the Chebyshev, Legendre or the general Gegenbauer

approximation based upon polynomials for non-periodic problems, are exponentially accurate

for analytic functions [3], [2]. However, for discontinuous but piecewise analytic functions,

the spectral partial sum approximates the function poorly throughout the domain. Away

from the discontinuity only first order accuracy is achieved. Near the discontinuity there are

0(1) oscillations which do not decrease with N, the number of terms retained in the spectral

sum. This is known as the Gibbs phenomenon.

Our framework in [4], [5] and [6] to overcome Gibbs phenomenon to obtain exponential

accuracy at all points for piecewise analytic functions relies heavily on using the Gegenbauer

polynomials C,(z), which are orthogonal in [-1, 1] with the weight function (1 - x2)-½2, for

large A. We assume that the first -N < k < N Fourier coefficients, or the first 0 < k < N

Legendre coefficients, of a discontinuous but piecewise analytic function, are given. The

procedure consists of two steps:

1. Using the given spectral partial sum of to recover the first m - N Gegenbauer

expansion coefficients, based on a sub-interval [a, b] C [-1, 1] in which the function

is presumably analytic, with exponential accuracy. This can be achieved for ['

any L, function, as long as we choose A in the weight function of Gegenbauer 0

polynomials to be proportional to N. The error incurred at this stage is called

the truncation error.

2. For an analytic function in [a, b], proving the exponential convergence of its Gegen- ar
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bauer expansion, when the parameter A in the weight function is proportional to

the number of terms retained in the expansion. The error at this stage is labeled

the regularization error.

In [6] we demonstrated this procedure in the case of a discontinuous but piecewise analytic

function, provided its Fourier or Legendre spectral partial sum is given.

The proof of the Legendre case in [6] is based upon first expanding the Legendre poly-

nomial P&(x) = Ck2(x) into its Fourier series. It was essential in this proof that the Fourier

expansion for the Legendre polynomial PN(x), for large N, contains lower terms that decay

exponentially with N (formula (2.13) in [6]). Unfortunately, it seems that this fact is true

only for Legendre polynomials, probably because their weight function is special (- 1). It

seems not true for other Gegenbauer polynomials, such as Chebyshev polynomials. In an

earlier version of [6], we quoted a formula (7.354, page 836 of [7]) to this effect for Chebyshev

polynomials. However, it is doubtful that Formula 7.354 of [7] is correct.

In this paper, we will consider the case of general Gegenbauer spectral methods, with

Chebyshev and Legendre methods as special cases. We assume that f(x) is an L, function

on [-1, 1] and analytic in a subinterval [a, b] C [-1, 11. We also assume that the Gegenbauer

partial sum of f(x), based upon the Gegenbauer polynomials Ck(x) with the weight function

(1 - X2)- I for any constant p >! 0, over the full interval [-1, 11, is known. The objective is

to recover exponentially accurate point values over the subinterval [a, b] of analyticity.

We will follow the same path as in [6]. Basically we will show that the first 0 < k < N

Gegenbauer expansion coefficients, based on the Gegenbauer polynomials Ck(x) for any

constant p Ž_ 0, contain enough information, such that a different, rapidly converging

Gegenbauer expansion in the subinterval [a, b], with the parameter A in the weight func-

tion (I - ý2)1-1 being proportional to N, can be constructed. As before, we will separate

the analysis of the error into two parts: truncation error and regularization error. Trunca-

tion error measures the difference between the exact Gegenbauer coefficients with A - N,

and those obtained by using the spectral partial sum. This will be investigated in Section 3.
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The regularization error measures the difference between the Gegenbauer expansion using

the first few Gegenbauer coefficients with A -, N, and the function itself in a sub-interval

[a, b], in which the function is assumed analytic. This error is estimated in [6] and we will

simply quote the result in Section 4. The results are summarized in Theorem 4.3, and some

remarks are also given in Section 4. Section 5 contains two numerical examples to illustrate

our results. In Section 2 we collect some useful properties of Gegenbauer polynomials to be

used later.

Throughout this paper, we will use A to denote a generic constant or at most a polynomial

in the growing parameters, as will be indicated in the text. It may not be the same at different

locations.

2 Preliminaries

In this section we collect some useful results about the Gegenbauer polynomials, to be used

in later sections. We rely heavily on the standardization in Bateman [I].

Definition 2.1. The Gegenbauer polynomial C,(x) is defined by

(1- )-C() = G(A,n)- Z 1(1 - z 2 (2.1)

where G(A, n) is given by

G(A,n) - (-l)-r(A + I)r(n + 2A) (2.2)

2,,n!r(2A)r'(n + A + 1)

0

Formula (2.1) is also called the Rodrigues' formula [2, page 1751.

Under this definition we have

( r(n + 2A)n!r(2A) (2.3)

and

IC,()I <nC((1), -1 < X < 1 (2.4)

3



The Gegenbauer polynomials are orthogonal under their weight function (1 - x 2)A-½:

11(I - x2)A-'k'(x)C,(x)dx = 5k,,,hn (2.5)

where
h" = 7CG(1) r(A + A) (2.6)

r(A)(n + A)

We will need to use. heavily the asymptotics of the Gegenbauer polynomials for large n

and A. For this we need the well-known Stirling's formula:

(27r)fx+½1e- < r(x + 1) •< (2tr)2x'+14 e 1, x > 1 (2.7)

Lemma 2.2. There exists a constant A independent of A and n such that

A` A) C(1) < h,_< A (n+A) C( (2.8)
A-(n+-A) - n+A'---

The proof follows from (2.6) and the Stirling's formula (2.7).

0

We also need the following lemma, which is easily obtained from the Rodrigues' formula

(2.1):

Lemma 2.3. For any A > 1 we have:

d• [,(l _ 2 -- •X l G (A, n) ( _ 2),\- ! ,\-l , 2.9z[(1 - x2)-½)"(z) = G(A - 1,n + 1)(1 - x2) ,-.x,(2.9)

The proof follows from taking one derivative JL on both sides of the Rodrigues' formula

(2.1), and then using it again on the right hand side.

0

Finally, we would need to use the following formula [2, page 1761:

1 d (2.10)

n•(z =2(n + Tz)" [ ,+I(X)- C.-I(X)2

4
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3 Truncation Error in a Sub-interval

Consider an arbitrary L1 function f(x) defined in [-1, 11. Suppose that the first 0 < k < N

Gegenbauer coefficients, based upon the Gegenbauer polynomials Ck(x) with the weight

function (1 - x2')"-12 for any constant p >_ 0, over the full interval [-1, 1], are given:

(I _ Xf - ) Cg•x)f(x)dx, 0 < k < N (3.1)

We are interested in finding the Gegenbauer expansion of f(x), with A -- N, based on a

sub-interval [a, b) C [-1, 1]. We start by introducing the local variable •:

Definition 3.1. The local variable 4 is defined by

x = X(V) =• + b (3.2)

where
b-a b+a (33)

2 2

Thus when a <x <b, -1 < < 1.

0

We consider functions f(x) satisfying

Assumption 3.2. IfP(k)l < A independent of k.

0

We remark that if f(x) is an L, function this assumption is fulfilled.

Since. we know the first N + 1 Gegenbauer coefficients, f"(k) for 0 < k < N, we define

the Gegenbauer partial sum:
N

fý(x) = > Zf(k)Ck(x) (3.4)
k=O

Note that fN(x) does not converge fast to f(x) if there exist discontinuities inside the domain.



The function f(z) has also a Gegenbauer expansion in a sub-interval [a, b], with A - N.

With ý, E and b defined in (3.2)-(3.3), we have
Co

f(f + 6) -- -f(1)CIA(a), -1 _< f _5 1 (3.5)
1=0

where the Gegenbauer coefficients j,(1) are defined by

T L_/ I(' -- -C()f(E + 6)d4 (3.6)

Of course, we do not have f,'(1) at our disposal, but only an approximation based on the

Gegenbauer parial sum fN(x), thus we have

1l /.. J (i C)A-cN()f(e• + 6)dC (3.7)
kll = I I 1,(1-2.' Vf

How well do §(l) approximate f,(1)? To answer this question we define

Definition 3.3. The truncation error is defined by

TE(A,m,N,c) = max IZ(J1(I) - §11(I))CI(e)I (3.8)

1=0

where f,'(l) are defined by (3.6) and §(l) are defined by (3.7).

0

The truncation error is the measure of the distance between the true Gegenbauer ex-

pansion in the interval [a, b] and its approximation based on the Gegenbauer partial sum in

P-1,11.

We first have the following lemma:

/,mma 3.4. The truncation error can be estimated by

TE(A,m,N,E) • jfM(q)j~ ley I ).j' - + 6)dý)' (3.9)

qfN+l 1__0

Proof: From (3.6) and (3.7) we have
1 1

- - _/_ - 21)A C'-()(f(,E + 6)- f_(e.ý + 6))d4 (3.10)
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Substituting (3.10) into (3.8), recalling (2.4) and

f(, + 6•)-f+6) E N(q)C"'( +6) (3.11)
q=N+l

we obtain (3.9).

0

For simplicity of notations we denote:

q ' (1-,A C~)~( ). (3.12)

In order to estimate this term we start with the following

Lemma 3.5. If we denote
.1 Fqj (3.13)

9• =G(A,1)

where G(A, 1) is defined by (2.2), then we have the following recursive formula:

IjA, = 1 -1,_+1 A1_,1+11 _

41 2(q + ,)e q-1 - +9 j A > 1, q Ž 1 (3.14)

Proof: By the definition of in (3.13)-(3.12), we have

jAI + 6)4

1 1

2G(A,l)(q + p)/J - [(1 - .•2)A•-}CN()] [Cq_,(• + 6)- C;,,(•~ + 6)] d•19
2( - + 1)( - 1 2 +1 (,E + 8) C +,• + ))] ,

1 N - • , 1+ 1 r- \ , 1+ 11
-- 2(q +t A)e t~ -1 -- "W I

where we have used (2.10) for the second equality; integration by parts for the third equality

(the boundary terms vanish because of the term (1 - e2)A- with A > 1); formula (2.9) for

the fourth equality; and the definition (3.12)-(3.13) for the last equality.

0
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We can now obtain the following recursive estimate for lI'-1:

Lemma 3.6. The IJ'- defined by (3.13) satisfies the following estimate:

I••,< r<q+ p+ -) max+,I I•\-,,+•1 :5 min(A.q) (3.15)
- ir(q + ,u+ 1) 9_ _~:

proof: We use induction on j. The estimate is clearly valid for j = 0. Assume that it is

valid for j = Jo -< min(A, q) - 1, then

NAI +' l(p+ I1-jo)ma'I'q -- O1(~p q-,o _<p+JoI I
< ie r(q+ it + 1) q I 1 A5pl+ 0 + P

E~ior(q + p + 1) 9-aO'P'5q+jO 2(p, + ji)E v- IPioiL+ol

r 1'(q+p+1-jo) I( maxq- I+jo++
o'(q + p + 1) -jo + p)e 9 [Iptijo+¶I + IIP•-jo-+ao+lII

5 r(q +p - jo) max io-,+io+i
oo+lr(q + p + 1) I-Io-1<p5q+jO+l

where we have used (3.14) for the second inequality. All other steps are simple inequalities.

This finishes the induction.

0

From the previous lemma we can get the following estimate:

Lemma 3.7. For FA,\ defined in (3.12) with A < q we have the following estimate:

IFq\'l <,ý A ~ - A) JG(A, 1)j1(.6
< Ar(q) IG(O,I A)(3.16)

where A grows at most as

rf. For simplicity and without loss of generality we assume A is an integer. Since A < q,

we can take j = A in (3.15) to arrive at

< r(q I -, 1-A) jmax: i I r(q " - maxC•r(q + u + ) Or(q) .\p5A

By the definition (3.12)-(3.13), we have, for q - A < p < q + A,

= IG(O,I + A)l -/;,)1-e O-('g)cP(c•+

8



< 6(o, I + A•) I-(

r_ + A) r(p+ 2p) 1 2p)
S(1+ A)! p!r(2 1A) IG(O,l + A)IJ(I - )-dL4

A<I
IG(O,I + A)I

where for the second inequality we have used (2.4) and for the third inequality we have used

(2.3). Clearly A is a constant if p and A grows at most as q2 -1 if p > •. Invoking

(3.13) again we obtain (3.16).

0

Using Stirling's formula we can now easily get:

Lemma 3.8. For I < _n < N and q > N, we have

IFqt <ý A (m + 2A)-+2-\ 1- F~1 (2fA)Am"- (3.17)

where A again grows at most as (m + A)½q2•-I.

Proof: Starting from (3.16) and using the definition (2.2), we obtain:

I F:,\,< A r(q -A) IG(,\,/)l

-Ar(q) IG(O,I + A)l
< r(q - A) r(A + 1)r(I + 2A) 21+,\(I/+ Ay r(/+ + -1)

- 1r(q) 2'/lr(2A)r(l + A + ½) r(l + A)

< Ar(q - A) r(A)r(y + 2A)2A
A r-q-) " !r(2A)

< A r(q- A) r(A)r(m + 2N)2'
- r(q) m!•r(2A)

< A (q - A)-•e-(-) A'e-(m + 2A)-,+2e-(-m+2A)2A
-•qqe-9 ~mme-M(2A) 2Ae- 2A

< A (m+ 2A)n+2-A 1
(2,EA),m- q"\

where we have used (2.2) in the second inequality; the monotonicity with respect to 1 in the

fourth inequality; and the Stirling's formula (2.7) for the fifth inequality.

0
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We are now ready for the main theorem of this section:

Theorem 3.9. Let the truncation error be defined in (3.8). Let A = afN and m = /f3N

with 0 < ca,f3 < 1, then

TE(acN,/#fN,N,c) < A k 2caa )+ (3.18)

where A grows at most as N'+2 11. In particular, if ci = 1 <, then

TE(afN, afN, N, c) < Aq"N (:3.19)

where

q = < 1 (3.20)

Proof: The theorem follows from (3.9), the Assumption 3.2, (2.8), and (3.17).

0

4 Regularization Error and the Main Theorem

The second part of the error, which is called the regularization error and is caused by using

a finite Gegenbauer expansion based on a sub-interval [a, b] C [-1, 1], to approximate a

function f(x) which is assumed analytic in this sub-interval, has been studied in [6]. We will

thus just qhiote the result.

We assume that f(x) is an analytic function on [a, b] satisfying

Assumption 4.1. There exists constants p >_ 1 and C(p) such that, for every k > 0,

max -ý'(x) I< C(p) (4.1)
a~xb dxkp

0

This is a standard assumption for analytic functions. p is the distance from [a, b] to the

nearest singularity of f(x) in the complex plane (see for example [8]). Let us consider the

Gegenbauer partial sum of the first m terms for the function f(C + 6):

f - f (l)C'(l) (4.2)
1=0

10



with e, • and 6 defined by (3.2) and (3.3), and the Gegenbauer coefficients based on [a,b]

defined by

f]'(I) = h-- J( - ~ f(e• + 6)G()d• (4.3)

The regularization error in the maximum norm is defined by:

RE(A, in, E) = max If(• + b) - E" f(l)Ol) (4.4)

We. have the following result for the estimation of the regularization error, when A m

[6]:

Theorem 4.2. Assume A = -yin where -y is a positive constant. If f(x) is analytic in

[a, b] C [-1, 1] satisfying the Assumption 4.1, then the regularization error defined in (4.4)

can be bounded by

RE(Tm, in, ) • Aqmn (4.5)

where q is given by
E(1 + 2y) 2 y+'(

q = p2'+ 2 y7(1 +Y)1+, (4.6)

which is always less than 1. In particular, if -y = I and in = /OEN where /3 is a positive

constant, then

RE(/N, f3N, f) < Aq N (4.7)

with
(27,E (4.8)

0

We can now combine the estimates for truncation errors and regularization errors to

obtain the following main theorem of this paper:

Theorem 4.3. (Removal of the Gibbs Phenomenon for the sub-interval case of Gegenbauer

partial sum).

11



Consider a L, function f(x) on [-1, 11, which is analytic in a sub-interval [a, b] C [-1, 1]

and satisfies Assumption 4.1. Assume that the first N + 1 Gegenbauer coefficients

fl (k) = L 1( x)I-Ck(x)f(x)dx,

for p _> 0, are known. Let 0A(I), 0 < 1 < m be the Gegenbauer expansion coefficients, defined

in (3.7), based on the sub-interval [a, bJ, of the Gegenbauer partial sum fy,(x) in (3.4). Then

for A = m = /kN with f# < , we have

max - - A (qýN + q N) (4.9)
1=0I

where

r= 2 0<, 1 qR =( <1
2 32p)

and A grows at most as NI+2'.

Proof: Just combine the results of Theorems 3.9 and 4.2.

0

We now give two remarks:

Remark 4.3. Comparing with the Legendre case in [6], we can see that the current proof is

less sharp (missing a factor of 1 in the truncation error qT). The main loss in this sharpness

is in the estimate (3.15).

0

Remark 4.4. No attempt has been made to optimize the parameters.

0

5 Numerical Results

In this section we give two numerical examples to illustrate our result. We will test Chebysbev

series because these are used most often in practice. Notice that the Chebyshev polynomials

are just Gegenbauer polynomials with p = 0 module a constant: Tk(x) "•Ck(X).

12



Example 5.1. We take the simple step function

A) 1, if a <_x <b(51
0, otherwise (5.1)

and assume that we know the first N + 1 Chebyshev coefficients of f(x):

f -(k) ( X2( - x)-Tk(x)f(x)dx, 0 < k < N (5.2)

where

S2, if k = 0
1, if k>_ (>.I)

We then form the Chebyshev partial sum
N

fNO(X) = E f°(k)Tk(x) (5.4)
k=O

and then compute the approximate Gegenbauer expansion coefficient based on the sub-

interval [a,b] defined by (3.7):

:(l)=" f:(: - + 6)dý (5.5)

With these Gegenbauer coefficients, we can finally compute the uniformly accurate ap-

proximation on [a, b] defined by

g,, ,(x) = C (1)C() (5.6)
1=0

Numerical experiments (for various functions) seem to indicate that

in = 0.lEN, A = 0.2fN k5. 7 )

are good choices. Notice that in our proof we did not attempt to optimize these parameters.

For consistency we will use (5.7) for both examples.

For this special function (5.1), there is no regularization error. Hence all we see is

the truncation error. In Fig. 1, left, we show the errors of a middle sub-interval [a, b] =

[-0.5,0.5], and in Fig. 1, right, we show that of a one-sided sub-interval [a,b] = [0, 1]. We

can clearly see good convergence for both cases.

13
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t0* I"I~

N-160 N-1

I'°+' '0."["

4.A O4A. 0.0 02 0*A 0.6 0.0 0* 0. 06 0.6 1.0

Fig. 1: Errors in log scale, f(z) defind by (5.1"). [a,b] = [-0.5,0.5] (left) and [a,b]) [0, 11

(right). A = 0.2cN and m = 0.1fN. N = 20,40,80, 160.

Since there is no regularization error for this example, and the truncation error is smaller

for small m, we also plot the errors for m = I and A = 0.2EN in Fig. 2. We can see

that the errors are now much smaller than those in Fig. 1. C ' "ourse for general functions

regularization errors must balance with truncation errors, so we cannot expect m = I to

work for the general case.

ii' 1C'

1o0 ,o. = Il

l'e N=40 e'

It, 161

N-O tN.

WI" IW.

W"O NN.160.__ I'" N=160

.OA 4, ".0 0* 04 0.C 0.0 0. 0. 0.0 0.6 1.0

Fig. 2: Errors in log scale, f(x) defind by (5.1). [a,b] = [-0.5,0.51 (left) and [a,b] = [0,11

(right). A = 0.2EN and m = 1. N = 20, 40, 80, 160.

Example 5.2. In the second example we take the the following function

{ sia(cos(x)), if a < x < b (5.8)
0, otherwise

14



Again we assume that we know the first N + 1 Chebyshev coefficients of f(z) defined by

(5.2).

This time both truncation error and regularization error exist. We again pick two cases

with middle as well as one-sided sub-intervals. From Fig. 3 we can see similar results as in

the previous example, Fig. 1.

20 fir ...e....

'N. N N

N lolN

VV Na
1NOW

(rgt. ., n =1 20,40,0,160

These examples illustrate well the good convergence behavior of our approach.

6 Concluding Remarks

We. have proven the exponential convergence in the maximum norm, of a reconstruction

procedure. using Gegenbauer series based on Cl'(x) with large A, for any L, function in any

sub-interval (a, b] in which the function is analytic, if we are given the first N expansion

coefficients of this function over the full interval [- 1, 11 based on Chebyshev, Legendre, or

any other Gegenbauer polynomial basis. Numerical examples are also given.
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